Chlorine-radical Induced Oxidation of Glyoxal and Glyoxal-S(IV) Adducts in the Aqueous Phase

Ying LI^{1,2}, Yun TANG³, Jia Qiang WANG¹*

¹ Department of Applied Chemistry, Yunnan University, Kunming 650091 ² Department of Chemistry, Honghe College, Mengzi 661100 ³ Yunnan Jiehua Chem Group Co., Ltd., Kaiyuan 661600

Abstract: A laser flash photolysis study of the reactivity of Cl'with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was carried out. The obtained rate constants can be used for atmospheric modeling.

Keywords: Chlorine-radical, glyoxal, glyoxal mono- and dibisulfite adducts, aqueous phase rate constants.

The important role in stabilizing SO_2 in the aqueous phase by the reaction of aldehydes with S(IV) to form hydroxyalkanesulfonate salts has been recognized¹. Since aldehydes are the major carbonyl compounds in polluted environments in the gas phase with large effective Henry's law constants, they are also the most abundant in the droplet phase¹⁻⁴. Glyoxal, an α -dicarbonyl compound, has been identified in cloud water with a mean concentration of 2 μ mol L⁻¹². Aldehyde substrates which meet this criterion and which also form highly stable aldehyde-bisulfite adducts represent potentially important S(IV) reservoirs. On the basis of these criteria, formaldehyde-, glyoxal-, and methylglyoxalbisulfite adducts have been found to be important species in clouds and fogs². However, the oxidation of S(IV) in clouds might also occur by a free-radical chain process initiated by 'OH and other radicals^{7,8}. Information on the reactivity of 'OH and other radicals with formaldehyde-, glyoxal-, and methylglyoxal-bisulfite adducts is therefore important for assessing their influence on the chain oxidation of SO₂ in the atmosphere. The Cl[·] radical may be formed in cloud droplets by the reactions of chloride with strongly oxidizing radicals such as NO_3^- , SO_4^- and 'OH, which are well known atmospheric species^{9,10}. The oxidation of hydroxy-methanesulfonate, the addition product of S(IV) with formaldehyde, in a free radical initiated chain process has been studied³⁻⁶. However, to date, there is no report about the study of the reaction of the free radicals with glyoxal-bisulfite adducts. The addition products of bisulphite with glyoxal are formed via the following reactions:

^{*} E-mail:jqwang@ynu.edu.cn

Ying LI et al.

Figure 1 Dependence of k_{obs} for the reaction of $Cl^{+} + [CH(OH)_2]_2$ on $[[CH(OH)_2]_2]$

Time-absorbance trace for the reaction of Cl⁻ with glyoxal at 320 nm.[Glyoxal] = 1 mmol L⁻¹ pH = 4.5, [Chloroacetone] = 0.02 mol L⁻¹; Ar saturated, 248 nm laser light.

$HSO_3 + [CH(OH)_2]_2 \Leftrightarrow HC(OH)_2CH(OH)SO_3 + H_2O$	(1)
$HSO_3^- + HC(OH)_2CH(OH)SO_3^- \Leftrightarrow (CH(OH)SO_3^-)_2 + H_2O$	(2)

The glyoxal mono-and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedisulfonate are hereafter respectively denoted with the acronyms GMBS and GDBS.

Experimental setup was described in detail in ref.6. The optical pathlength of the cell was 1 cm. To improve signal quality, recorded traces were an average of four separate flashes to freshly flushed samples. All the kinetics experiments were carried out under pseudo-first-order conditions with [glyoxal]>>[radicals]₀ at ambient temperature. All errors are reported as 2σ from linear regression fits. Cl⁻ was produced in the absence of Cl⁻ by 248 nm laser photolysis of chloracetone⁶. The reaction of Cl⁻ with glyoxal, reaction (3), was investigated in argon-saturated solutions of 0.02 mol L⁻¹ chloroacetone and (0.1- 4) mmol L⁻¹ glyoxal at pH = 4.5 using 248 nm laser light.

 $Cl' + [CH(OH)_2]_2 \rightarrow Products$ (3)

Absorption signals monitored at 320 nm decayed by first-order kinetics to a plateau (see inset to **Figure 1**). At room temperature (292 \pm 2 K), a plot of k_{obs} against [[CH(OH)₂]₂] is shown in **Figure 1**. The slope of the straight line yields a rate constant of k₃ = (6.2 \pm 0.4) \times 10⁸ L³ mol⁻¹ s⁻¹. At the moment, there is no literature value for comparison.

Similar to the study of Cl[•] with glyoxal, the reactions of Cl[•] with GMBS and GDBS, reactions (4 and 5), were also investigated in argon-saturated solutions of 0.02 mol L⁻¹ chloroacetone and (0.1- 4) mmol L⁻¹ glyoxal-sodium bisulphate addition compound at pH = 4.3 using 248 nm laser. A pseudo-first order trace is shown in **Figure 2**.

$$\begin{array}{ccc} \text{Cl}^{\cdot} + \text{GMBS} & \xrightarrow{\mathbf{k}_{4}} & \text{Products} & (4) \\ \text{Cl}^{\cdot} + \text{GDBS} & \xrightarrow{\mathbf{k}_{5}} & \text{Products} & (5) \end{array}$$

Chlorine-radical Induced Oxidation of Glyoxal and Glyoxal-S(IV) Adducts 121

Figure 2 Time-absorbance trace for the reaction of Cl[•] with GMBS and GDBS

[Chloroacetone] = 0.02 mol L⁻³, pH = 4.3, Ar saturated. [GDBS]₀ = 1 mmol L⁻³, λ = 320 nm, 248 nm laser light.

Due to the two equilibria: (1) and (2), it is necessary to know the concentration of each species present in this system at a given initial concentration of glyoxal- sodium bisulfite addition compound ([GDBS]_o). They were calculated using a FACSIMILE program (The detail will be sent upon request).

The observed rate constants, $k_{obs}(Cl^{-})$ for the decay of Cl⁻ in this system were corrected for the reactions of Cl⁻ with glyoxal (reaction (3)) and HSO₃⁻ (reaction (6)), which are in equilibrium with the addition compounds, reaction (1) and (2).

Cl[·] + HSO₃⁻
$$\xrightarrow{k_6}$$
 Products (6)
k₆ = (2.8 ± 0.2) × 10⁸ L ³ mol⁻¹ s⁻¹ (ref.6)

These processes accounted for ~ 15% of k_{obs} at the studied [GDBS]₀ range. The corrected k_{obs} (Cl[•]) was named as k_{dif} (Cl[•]) which can be calculated *via* Eq.1:

$$k_{dif}(Cl^{-}) = k_{obs}(Cl^{-}) - k_1[Glyoxal] - k_6[HSO_3^{-}]$$
 Eq.1

where $k_{obs}(Cl^{\cdot})$ is observed rate constant for the decay of Cl^{\cdot}.

In order to distinguish the reactivity of the two complexes, the obtained data were treated using the Microcal Software Inc. 3-D ORIGIN curve-fitting package where the dependence of k_{dif} (Cl⁻) on [GMBS] and [GDBS] was treated *via* Eq.2 (**Figure 3**):

$$k_{dif}(Cl^{\cdot}) = k_4[GMBS] + k_5[GDBS] + k_c$$
 Eq.2

where k_4 , k_5 are the rate constants for the reactions of Cl[•] with the mono- (4) and dicomplex (5), respectively;

[GMBS] and [GDBS] are the concentrations of mono- and di-complex, respectively;

 $k_{\rm c}$ is the sum of the rate constants for the reactions of Cl $\,$ with H_2O and ClCH_2COCH_3.

The obtained values are:

 $k_4 = (1.92 \pm 0.65) \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1}, k_5 = (1.48 \pm 0.42) \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1}$

Ying LI et al.

[Chloroacetone] = $0.02 \text{ mol } \text{L}^{-3}$, pH = 4.3Ar saturated, 248 nm laser light.

These two rate constants were used to calculate back the $k_{obs}(Cl^{\cdot})$ and compared with the experimental $k_{obs}(Cl^{\cdot})$, the results are shown in **Figure 4**. It is seen that the calculated values agree very well with the experimental values.

Acknowledgments

The project was supported by Natural Science Foundation of Yunnan University under the Grant No.2002Z002GC and Natural Science Foundation of Yunnan Province under the Grant No. 2003E0007R and 2003E0004Q.

References

- 1. C. C. Ang, F. Lipari, S. W. Swarin, Envion. Sci. Technol., 1987, 21, 102.
- 2. T. M. Olson, M. R. Hoffman, J. Phys. Chem., 1988, 92, 533.
- S. Barlow, G. V. Buxton, S. A. Murray, G. A. Salmon, J. Chem. Soc., Faraday Trans., 1997, 93, 3637.
- S. Barlow, G. V. Buxton, S. A. Murray, G. A. Salmon, J. Chem. Soc., Faraday Trans., 1997, 93, 3641.
- 5. H. Herrmann, R. Zellner, M. Exner, H. W. Jacobi, *et al.* in: P. Warneck, (Ed.), *Heterogeneous and Liquid-Phase Processes*, Springer, **1996**, 146.
- 6. G. V. Buxton, M. Bydder, G. A. Salmon, J. E. Williams, *Geophysical Research Abstracts*, **1999**, *1*, 512.
- 7. W. L. Chameides, D. D. Davis, J. Geophys. Res., 1982, 87, 4863.
- 8. W. J. McElroy, Atmos. Environ., 1986, 20, 323.
- 9. G. V. Buxton, G. A. Salmon, J. Wang, Phys. Chem. Chem. Phys., 1999, 1, 3589.
- 10. G. V. Buxton, M. Bydder, G. A. Salmon, Phys. Chem. Chem. Phys., 2000, 2, 237.

Received 8 December, 2003